The Data Networking Technology Ecosystem

Explore the Evolution of the Technology that Powers Modern Networking

Microservice **Network Function** (MNF)

Virtualized **Microservice Network Function** (VMNF)

≺stateless

Why Was It Invented?

To Make Data Networks Easier to Create, More Efficient & Reliable

Architecture

Cloud-Native Software Running on Standard Servers

Function

Router, Filtering, Network Address Translation

Where Is It Used? Data Transport Networks

⊲stateless

SOFTWARE

Why Was It Invented?

To Completely Eliminate Hardware Dependency

Architecture

Cloud-Native Software Running on Cloud Compute

Function

Router, Filtering, Network Address Translation

Where Is It Used?

Data Transport Networks

All logos are the property of their respective owners and are used here for product comparison purposes only. Logo usage does not indicate endorsement of or agreement with any of the information presented in this document.

⊲stateless

Networking Technology Comparison Matrix

Each of these networking technologies was created to solve different specific problems and has unique strengths and weaknesses. Read on to compare these technologies: how they function, their intended use, and the benefits and challenges of each.

	TRADITIONAL DEVICES	NFV Network Function Virtualization	SDCI Software-Defined Cloud Interconnect	WHITE BOX NFV	SD-WAN Software-Defined Wide Area Network	WANasS Wide Area Network as a Service	vMNF Microservice Network Function Virtualization
Description	Networking hardware that fulfills a fixed purpose	Custom servers with VMs running vendor device software	Cloud connectivity managed service	Virtualized network devices operating on generic servers	Purpose-built hardware or software	Managed network connectivity	Microservice-based network function software
Solutions Provided	Routers, Firewalls, SD-WAN, Load Balancers, Switches	Routers, Firewalls	Direct access to hyperscalers and SaaS providers	Routers	Switching of traffic between WAN connections - typically MPLS or Internet	Managed WAN connectivity	Routing, Packet Filtering, Address Translation, Encryption
Architecture	Hardware-based design using fixed ASICs	Vendor software ported to virtualized server environment	Managed network service exchanges	Blend of open source and custom software that creates virtualized routers	Deep Packet Inspection rules based switching system	Managed network access points with connectivity to clouds	Cloud-native software that executes network functions as microservices
Management	Vendor proprietary operating system	Vendor proprietary operating system / server virtualization	Proprietary user interface software	Proprietary vendor software with API	Vendor proprietary out of band system	Proprietary user interface software	Fully API controlled with optional GUI
Strengths	Hardware speed, conventional	Virtualization	Easy to use, semi-automated connectivity to clouds	Software first design, generic hardware	Allows companies to 'route' traffic based on policy	Similar to SDCI with additional access options	Create networks on-the-fly, supports in-service upgrades, cloud-like elasticity
Weaknesses	Complicated, rigid, difficult to automate	Expensive, lower performance, more complicated	Connectivity limited to what vendor offers, expensive	Device centric, limited applications, expensive	Requires multiple WANs, cost of equipment can be higher than WAN savings	'Cloud-washed' packaging of a managed service	New technology
Vendors	Cisco, Juniper, Palo Alto, Fortinet, F5	Cisco, Juniper, Palo Alto, Fortinet, F5	Packet Fabric, Megaport, Equinix, Cologix	DriveNets Volta Networks	Juniper, Silver Peak, Versa Networks, Fortinet, Barracuda	Alkira, Aviatrix, Kaloom, Volterra	⊲stateless